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Abstract 

Gene expression analyses contribute to identification of molecular changes that occur in cells in response 

to internal and external stimuli. Real-time reverse transcription PCR (qRT-PCR) assay is widely used for 

gene expression analysis because of its fast, specific and sensitive detection of targets. At least a reference 

gene is needed for normalization of the expression level of target genes. Although some wheat reference 

genes have been identified under different experimental conditions, no reference gene was identified 

under dehydration stress conditions. Here, we report three reference genes, CDCP, SAR and hnRNPQ, 

suitable for normalization of gene expression under dehydration conditions in synthetic hexaploid wheat 

and its parental tetraploid and diploid wheat. 

 

Introduction 

Common wheat (Triticum aestivum L., BBAADD 

genome) is an allohexaploid species originated by 

natural hybridization between tetraploid wheat (T. 

turgidum L., BBAA genome) and Aegilops 

tauschii Coss. (DD genome) (Kihara 1944; 

McFadden and Sears 1944). Ae. tauschii can be 

crossed to tetraploid wheat to produce synthetic 

hexaploid wheat (McFadden and Sears 1944; 

Kihara and Lilienfeld 1949; Matsuoka and 

Nasuda 2004), and therefore Ae. tauschii is one of 

the potential sources for common wheat breeding. 

Indeed, wide variations in agronomically 

important traits have been observed in Ae. 

tauschii and their derived synthetic hexaploid 

wheat lines (Kajimura et al. 2011; Iehisa and 

Takumi 2012; Okamoto et al. 2012). 

Transcriptome and gene expression analyses 

are effective for identification of molecular 

changes that occur in cells in response to internal 

and external stimuli (Mele and Hake 2003; Hazen 

et al. 2003). Quantitative reverse transcription 

PCR (qRT-PCR) assay is widely used for gene 

expression analysis because of its fast, specific 

and sensitive detection of targets (Gachon et al. 

2004). To quantify the expression levels of target 

genes, at least one control gene (reference gene) is 

required for normalization to correct for 

variations in amount of initial samples, RNA 

recovery and integrity, enzymatic efficiencies of 

cDNA synthesis and PCR amplification, and 

overall transcriptional activities of the tissues or 

cells analyzed (Andersen et al. 2004; Chen et al. 

2006). Selection of appropriate reference genes 

involves identifying candidates, validating the 

candidates under specific experimental conditions, 

and then revalidating the selected reference genes 

in each subsequent experiment (Remans et al. 

2014). 

Although reference genes have been identified 

in wheat under different experimental conditions 

(Paolacci et al. 2009; Long et al. 2010; Giménez 

et al. 2011; Tenea et al. 2011; Zhang et al. 2013; 

Jurczyk et al. 2014), no reference gene was 

identified under dehydration stress conditions. 

Therefore, the objective of this study was 



identification of reference genes for normalization 

of wheat gene expression under dehydration 

conditions in synthetic hexaploid wheat and its 

parental tetraploid wheat and diploid wheat 

relative Ae. tauschii. 

 

Material and Methods 

Plant materials 

Two synthetic hexaploid wheat lines 

Ldn//PI476874 and Ldn//KU-2059, and their 

parental tetraploid wheat T. turgidum ssp. durum 

cv. Langdon (Ldn) and diploid Ae. tauschii 

PI476874 and KU-2059 accessions were used. 

These synthetic wheat lines were generated by 

interspecific hybridization of Ldn and Ae. tauschii 

(Kajimura et al. 2011).  

 

Dehydration treatment 

Seeds of hexaploid and tetraploid wheat and Ae. 

tauschii accessions were sown on soil containing 

plastic pots at 24°C under long day condition (16 

h light and 8 h darkness). Twelve-day-old 

seedlings of Ae. tauschii and 10-d-old seedlings 

of hexaploid and tetraploid wheat were removed 

from soil. Roots were carefully washed with 

water and the excess of water was wiped. 

Dehydration treatment was performed placing the 

roots on dry filter paper.  

 

Expression analysis of candidate genes 

Total RNA was extracted from crown tissue of a 

pool of three individuals at 0, 2, 4 and 12 h after 

dehydration treatment using Sepasol-RNA I Super 

G (Nacalai Tesque, Kyoto, Japan). The 

accumulation of each gene transcript was detected 

by qRT-PCR using a LightCycler 480 Real-Time 

PCR System (Roche Diagnostics, Mannheim, 

Germany) with the gene-specific primer sets 

given in Table 1. The rate of amplification was 

monitored using THUNDERBIRD SYBR qPCR 

mix (Toyobo, Osaka, Japan) according to the 

manufacturer’s protocol. 

 

Data analysis 

PCR efficiency of each primer pair was 

determined for all samples by the LinRegPCR 

quantitative PCR data analysis program (version 

2016.1) (Ruijter et al. 2009) using raw 

fluorescence as input data. Using the PCR 

efficiency data and Cq values calculated with 

LightCycler 480 software (Roche), gene 

expression stability was analyzed with geNorm 

(Vandesompele et al. 2002), NormFinder 

(Andersen et al. 2004) and BestKeeper (Pfaffl et 

al. 2004).  

 

Results and Discussions 

Expression level of the candidate reference genes 

in Ae. tauschii 

Housekeeping genes, which are involved in basic 

cellular processes such as cell structure 

maintenance or primary metabolism has been 

widely used as reference genes for qRT-PCR. In 

wheat, housekeeping genes such as 18S rRNA, 

actin, alpha-tubulin have been traditionally used 

(Paolacci et al. 2009). However, it was previously 

found that the expression levels of many other 

genes are more stable than those of the 

traditionally used reference genes (Paolacci et al. 

2009; Long et al. 2010). Based on the previous 

studies (Paolacci et al. 2009; Long et al. 2010), 

we selected five genes for Cell Division Control 

Protein (CDCP), Elongation Factor 1-alpha 

(EF1a), Heterogeneous Nuclear 

Ribonucleoprotein Q (hnRNPQ), 

Scaffold-associated regions DNA binding protein 

(SAR) and Glucan endo-1,3-beta-glucosidase 4 

precursor (GE1,3) as candidates. First, the 

Table 1. List of primers used in this study 

Gene Primer sequence (5’ to 3’) Reference 

hnRNPQ 
TCACCTTCGCCAAGCTCAGAACTA 

AGTTGAACTTGCCCGAAACATGCC 
Long et al. (2010) 

SAR 
GAGTCTGCCCACCCATTCGTAA 

GACATGCCATAGGTTTCAGCGAC 
Long et al. (2010) 

GE1,3 
AGCACAGCGAAGAGAAGCAG 

TACCTGAGCAGACAATGGGAGAG 
Long et al. (2010) 

EF1a 
CAGATTGGCAACGGCTACG 

CGGACAGCAAAACGACCAAG 
Crismani et al. (2006) 

CDCP 
CAAATACGCCATCAGGGAGAACATC 

CGCTGCCGAAACCACGAGAC 
Paolacci et al. (2009) 

 



expression levels of these genes were evaluated in 

the two Ae. tauschii accessions (PI476874 and 

KU-2059) under dehydration condition. The mean 

quantification cycle (Cq) of the two accessions for 

GE1,3 was around 30 at different time points of 

dehydration treatment (Fig. 1). In contrast, the 

rest of genes showed a mean Cq value of around 

20 indicating that the expression level of GE1,3 

was low. Previous study has suggested that the 

expression levels of reference genes should not be 

very low (Cq > 30) or very high (Cq < 15) (Lland 

et al., 2006). 

The mean amplification efficiency of each 

primer set was calculated using amplification 

curves of these samples. The amplification 

efficiency ranged from 1.62 for GE1,3 to 2.00 for 

hnRNPQ (Table 2). 

Expression stability of candidate genes in Ae. 

tauschii 

To determine the expression stability of candidate 

reference genes, we used three algorithms widely 

used for this purpose; geNorm, NormFinder and 

BestKeeper. geNorm determines pairwise 

variation for every gene respect to all other genes 

as the standard deviation of the logarithmically 

transformed expression ratios (M value). Thus, 

genes with the lowest M values have the most 

stable expression (Vandesompele et al. 2002). 

GE1,3 and EF1a presented higher M value, and 

the other three genes lower values (Fig. 2A), 

indicating that hnRNPQ, CDCP and SAR showed 

more stable expression among the samples in this 

experimental conditions. 

 

Fig. 1. Average Cq values of the five candidate reference genes in Ae.

tauschii under dehydration condition. Average Cq values of two Ae.

tauschii accessions PI476874 and KU-2059 at 0, 2, 4 and 12 h after

dehydration treatment. CDCP (diamond), EF1a (square), GE1,3 (open

circle), hnRNPQ (filled circle) and SAR (triangle) were analyzed.

Table 2. Amplification efficiencies of the primer sets analyzed in  

Ae. tauschii 

Gene Efficiency 

CDCP 1.88 

EF1a 1.89 

GE1,3 1.62 

hnRNPQ 2.00 

SAR 1.97 

 



NormFinder uses model-based and inter- and 

intra-group expression variation to determine the 

stability of each gene (Andersen et al. 2004). This 

algorithm also showed similar result to that of 

geNorm (Fig. 2B). GE1,3 and EF1a were the least 

stable genes, and the other three were the most 

stable genes. 

BestKeeper evaluates gene expression 

stability for each candidate reference gene based 

mainly on standard deviation (S. D.) of Cq values 

and Pearson’s coefficient of correlation (r). This 

correlation coefficient is calculated between each 

candidate reference gene and the BestKeeper 

index, which in turn is calculated combining all 

highly correlated candidate reference genes. The 

genes with smaller S. D. and higher r values are 

considered to be suitable as reference gene (Pfaffl 

et al. 2004). In concordance with the results 

obtained in geNorm and NormFinder, the analysis 

with BestKeeper also indicated that hnRNPQ, 

CDCP and SAR were the most suitable genes 

(Table 3). 

 

 

Fig. 2. Analysis of expression stability of candidate reference genes in Ae.

tauschii under dehydration condition. Stability of gene expression was

calculated using A) geNorm and B) NormFinder for GE1,3, EF1a,

hnRNPQ, CDCP and SAR in two Ae. tauschii accessions PI476874 and KU-

2059. In both algorithms, lower values indicate higher expression stability.

Table 3. Analysis of expression stability using BestKeeper 

 CDCP hnRNPQ SAR EF1a GE1,3 

S. D. 0.25 0.26 0.31 0.75 0.84 

r 0.94 0.89 0.97 0.84 -0.07 

Standard deviation (S. D.) of the Cq values and the Pearson’s coefficient of correlation (r) 

between each gene and the BestKeeper index are presented. 



Evaluation of selected reference genes in 

hexaploid, tetraploid and diploid wheat 

To evaluate expression stabilities of the hnRNPQ, 

CDCP and SAR genes in hexaploid, tetraploid and 

diploid wheat under dehydration conditions, two 

synthetic hexaploid wheat lines, Ldn//PI476874 

and Ldn//KU-2059, and their parental accessions 

were used. Among the three genes analyzed, 

hnRNPQ showed the highest stability with 

geNorm and NormFinder (Table 4). BestKeeper 

also showed the same result, and hnRNPQ 

represented the lowest S. D. of Cqs and the 

highest r value. The stability values were similar 

between SAR and CDCP, but SAR gave better 

stability when analyzed with BestKeeper. 

Although hnRNPQ performed better when used 

hexaploid, tetraploid and diploid wheat, these 

three genes presented similar performance in Ae. 

tauschii under dehydration conditions. CDCP has  
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Grain quality is one of the most important targets 

in wheat breeding. Transcriptome analyses of 

wheat developing grains and endosperm have 

been performed using the microarray and RNA 

sequencing (RNA-seq) approaches (Wan et al. 

2008, 2009; Nemeth et al. 2010; Pellny et al. 

2012; Dong et al. 2015). For the RNA-seq 

analysis of the grain transcriptome and precise 

quantification of each transcript in developing 

grain and endosperm, the high-quality RNA is 

essential. For the microarray analysis, ≥7.3 RIN 

(RNA integrity number) value for the RNA 

sample quality is required according to the 

Agilent microarray protocol. In the previous 

report for the transcriptome of wheat developing 

grains, the total RNA samples with ≥8.0 RIN 

values were used for the RNA-seq analysis based 

on the PacBio and Illumina platforms (Dong et al. 

2015). Some RNA extraction buffers containing 

SDS, CTAB, or TRIzol® reagent (Thermo Fisher 

Scientific, Waltham, Massachusetts) and several 

commercial kits for RNA isolation have been 

used to isolate total RNA from wheat grain and 

endosperm (Kawakami et al. 1992; Wan et al. 

2008; Kang et al. 2013). However, total RNA 

samples from the wheat developing and immature 

grains are often damaged due to high content of 

polysaccharides and high stickiness of the 

solution homogenized with the RNA extraction 

buffer, and thus extraction of the high-quality 

RNA with high RIN value is quite difficult. Here, 

we report a protocol for the wheat grain RNA 

extraction using Maxwell RSC Plant RNA Kit 

(Promega, Madison, Wisconsin).  

Two tetraploid wheat lines, Triticum turgidum 

ssp. durum cv. Langdon and T. timopheevi 

KU-107-1, a wild Einkorn wheat line, T. 

boeoticum KU-3620, and a wild tetraploid 

relative, Aegilops cylindrica KU-6953, were used 

in this study. The seeds were supplied by the 

National BioResource Project (NBRP)-Wheat, 

Japan (https://www.nbrp.jp), and plants were 

grown in a field at Kobe University (34˚43’N, 

135˚13’E). Selfed seeds with 7 to 30 days after 

pollination (DPA) were ground in liquid nitrogen, 

and then the ground tissues were mixed with the 

600 µL Homogenization buffer attached in the 

Promega kit or RNase-free phosphate-buffered 

saline (PBS) buffer (pH7.4, Thermo Fisher 

Scientific) including 20 µL/mL 1-thioglycerol. 

200 µL Lysis buffer of the Promega kit was added 

to the 400 µL sample solution and mixed, and 

then the mixed solution was centrifuged at 14,000 

g for 2 min. According to the protocol of the 

Maxwell RSC Plant RNA Kit, the samples were 

set to the Maxwell RSC Instrument (Promega) to 

start RNA purification. When the first seed 

sample amount was excessed, the magnetic beads 

were sometimes contaminated to the eluted RNA 

solution. After removing the magnetic beads, the 

RNA solution was purified using Plant Total RNA 

Extraction Miniprep System (VIOGEN, Taipei 

Hsien, Taiwan) as the occasion demands. The 

extracted total RNA was finally dissolved in 50 

µL DEPC-treated water. The extracted RNA 

quality was estimated by NanoDrop 2000 

(Thermo Fisher Scientific) and BioAnalyzer 2100 

(Agilent Technology, Santa Clara, CA).  

Excess seed samples were related to the high 

stickiness of the solution homogenized with the 



RNA extraction buffer. Use of the PBS buffer 

instead of the Homogenization buffer greatly 

alleviated the stickiness. However, higher RIN 

values were obtained in the extracted RNAs using 

the Homogenization buffer than in those using the 

PBS buffer (Table 1). Presumably, use of the  

Homogenization buffer tended to induce the 

contamination of magnetic beads in the eluted 

RNA solution due to the high stickiness. The 

beads-contaminated RNAs could be more purified 

using the other RNA purification kit after 

removing the magnetic beads. Quality checking 

using BioAnalyzer 2100 showed that no damage 

in the RNA quality was observed by the additive  

purification step (Fig. 1). The RNA isolation 

protocol enables us to extract easily the 

high-quality RNA with ≥8.0 RIN value from 

developing grains of diploid and polyploid wheat 

and their relatives. 

Reverse transcription (RT)-PCR analysis of 

the wheat Cell Division Control Protein (CDCP) 

gene, identified as the most stably expressed gene 

in different tissues (Paolacci et al. 2009), was 

performed using the RNA samples without 

adjustment of their concentrations, and 

first-strand cDNA was synthesized from DNase 

I-treated RNA samples with oligo-dT primers 

using the high fidelity ReverTra Ace reverse 

 

Table 1. Quality check of the RNA isolated from wheat grains 

Sample 

Name 

DAP Sample 

weight (mg) 

Buffer* A260/A280 

ratio** 

RNA conc. 

(ng/µL)*** 

RIN 

value*** 

Langdon 20 58 PBS 2.18 435.0 7.6 

Langdon 20 116 PBS 2.17 708.0 7.4 

Langdon 15 48 PBS 2.16 402.0 7.4 

Langdon 15 96 PBS 2.19 1,543.0 7.6 

KU-107-1 30 72 PBS 2.19 690.0 7.4 

KU-107-1 30 144 PBS 2.17 5,991.0 7.3 

KU-107-1 20 69 PBS 2.18 330.0 7.5 

KU-107-1 20 138 PBS 2.17 190.8 7.0 

Langdon 20 58 HB 2.10 130.6 7.8 

Langdona 20 116 HB 2.22 121.0 8.7 

Langdona 15 48 HB 2.23 76.1 8.5 

Langdona 15 96 HB 2.25 87.5 8.7 

KU-107-1a 30 72 HB 2.23 103.6 8.7 

KU-107-1a 30 144 HB 2.27 89.1 8.5 

KU-107-1a 20 69 HB 2.22 63.1 8.9 

KU-107-1a 20 138 HB 2.19 61.4 7.7 

KU-3620 20 51 PBS 2.17 102.0 6.9 

KU-3620 20 102 PBS 2.13 307.5 6.7 

KU-3620 15 33 PBS 2.19 346.0 6.6 

KU-3620 15 66 PBS 2.17 156.0 6.5 

KU-3620 7 17 PBS 2.19 26.0 6.7 

KU-3620 7 34 PBS 2.18 127.0 6.3 

KU-6953 20 51 PBS 2.17 125.0 3.9 

KU-6953 20 102 PBS 2.17 1,150.0 6.8 

KU-3620 20 51 HB 1.99 406.0 9.9 

KU-3620a 20 102 HB 2.19 79.8 8.8 

KU-3620 15 33 HB 2.16 259.0 9.8 

KU-3620 15 66 HB 2.06 432.0 9.7 

KU-3620 7 17 HB 2.17 262.0 9.4 

KU-3620 7 34 HB 2.18 302.0 9.4 

KU-6953 20 51 HB 2.02 100.0 9.4 

KU-6953a 20 102 HB 2.15 47.2 9.2 

*PBS, 1x PBS buffer; HB, Homogenization buffer in the Promega kit 

**Estimated by NanoDrop 2000 

***Estimated by BioAnalyzer 2100 
aThe total RNA was purified with the VIOGEN kit after removing the magnet beads. 



transcriptase (Toyobo, Osaka, Japan). The 

gene-specific primer set for CDCP, which has 

been used as an internal control for wheat 

quantitative RT-PCR analyses (Paolacci et al. 

2009; Rikiishi and Maekawa 2014; Iehisa and 

Takumi 2017), was 

5’-CAAATACGCCATCAGGGAGAACATC-3’ 

and 5’-CGCTGCCGAAACCACGAGAC-3’. The 

PCR condition was 1 cycle of 94°C for 2 min, 30 

cycles of 94°C for 20 s, 58°C for 30 s, and 68°C 

for 45 s, and then 1 cycle of 68°C for 1 min. The 

RT-PCR products were separated by 

electrophoresis through a 1.5% agarose gel and 

stained with ethidium bromide. The RT-PCR 

fragments for CDCP were clearly amplified in all 

of the RNA samples (Fig. 2). The high-quality 

RNA isolated from immature grains using the 

protocol conducted here can be applied to any 

transcriptome analysis and precise quantification 

of each transcript.  

Figure 2. RT-PCR analysis of wheat CDCP gene expression using the RNA samples from grains. 

 

 
 

Figure 1. Quality check data of the isolated RNA samples by BioAnalyzer 2100. 
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